References
A curated list of recent research and implementations using Mamba-based state space models.
Mamba-based Models and Applications
- Is Mamba Effective for Time Series Forecasting?
- Paper (arXiv:2403.11144)
- GitHub Repository
- A study of Mambaβs performance on time series forecasting tasks compared to standard models.
- STG-Mamba: Spatial-Temporal Graph Learning via Selective State Space Model
- Paper (arXiv:2403.12418)
- GitHub Repository
- Introduces Mamba for spatial-temporal graph data, effective in traffic and sensor network forecasting.
- Graph Mamba: Towards Learning on Graphs with State Space Models
- Paper (arXiv:2402.08678)
- Explores adapting state space models to graph data, with competitive results on graph classification tasks.
- Graph-Mamba: Towards Long-Range Graph Sequence Modeling with Selective State Spaces
- Paper (arXiv link not listed)
- GitHub Repository
- Focuses on long-range dependencies in graph sequences using selective state space models.
- PointMamba: A Simple State Space Model for Point Cloud Analysis
- Paper (arXiv:2402.10739)
- GitHub Repository
- Applies Mamba architecture to point cloud data for 3D vision tasks.
- ClinicalMamba: A Generative Clinical Language Model on Longitudinal Clinical Notes
- Paper (arXiv:2403.05795)
- GitHub Repository
- Utilizes Mamba to model long-range dependencies in clinical notes for language modeling in healthcare.
CILR 2025 Spatiotemporal Forecasting Papers (OpenReview)
- [Oral] High-Dynamic Radar Sequence Prediction for Weather Nowcasting Using Spatiotemporal Coherent Gaussian Representation
- π Paper Link
- Authors : Ziye Wang, Yiran Qin, Lin Zeng, Ruimao Zhang
- Keywords : 3D Gaussian, dynamic reconstruction, radar forecasting, weather nowcasting
- Score : 888
- [Spotlight] Learning Spatiotemporal Dynamical Systems from Point Process Observations
- π Paper Link
- Authors : Valerii Iakovlev, Harri LΓ€hdesmΓ€ki
- Keywords : Dynamics, spatiotemporal, neural, PDE, ODE
- Score : 8688
- PhyMPGN: Physics-encoded Message Passing Graph Network for Spatiotemporal PDE Systems
- π Paper Link
- Authors : Bocheng Zeng et al.
- Keywords : Physics encoding, spatiotemporal PDEs, graph networks, deep learning
- TL;DR : Proposes a physics-encoded MPNN for modeling spatiotemporal PDE systems.
- Score : 861088
- Expand and Compress: Exploring Tuning Principles for Continual Spatio-Temporal Graph Forecasting
- π Paper Link
- Authors : Wei Chen, Yuxuan Liang
- Keywords : Spatiotemporal graph, continual forecasting, tuning
- TL;DR : EAC uses expand and compress to tune prompt parameter pools efficiently.
- Score : 3888
- WardropNet: Traffic Flow Predictions via Equilibrium-Augmented Learning
- π Paper Link
- Authors : Kai Jungel et al.
- Keywords : Structured learning, combinatorial optimization, traffic equilibrium
- Score : 8655
- Air Quality Prediction with Physics-Informed Dual Neural ODEs in Open Systems
- π Paper Link
- Authors : Jindong Tian et al.
- Keywords : Air quality, physics-informed deep learning
- TL;DR : A new physics-informed neural ODE method
- Score : 66866
- Spectral-Refiner: Accurate Fine-Tuning of Spatiotemporal Fourier Neural Operator for Turbulent Flows
- π Paper Link
- Authors : Shuhao Cao et al.
- Keywords : Operator learning, FNO, Navier-Stokes, CFD
- TL;DR : Refines FNO using spectral methods for 10,000x accuracy.
- Score : 5658
- Deep Random Features for Scalable Interpolation of Spatiotemporal Data
- π Paper Link
- Authors : Weibin Chen et al.
- Keywords : Random features, deep Gaussian process, Bayesian deep learning, remote sensing
- TL;DR : Scalable Bayesian DL for interpolating remote sensing data
- Score : 388
- A Large-scale Dataset and Benchmark for Commuting Origin-Destination Flow Generation
- π Paper Link
- Authors : Can Rong et al.
- Keywords : Commuting, OD flow, urban computing, weighted graph modeling
- TL;DR : Provides OD matrix data from 3,000+ U.S. regions
- Score : 5868
- Diffusion Transformer Captures Spatial-Temporal Dependencies: A Theory for Gaussian Process Data
- π Paper Link
- Authors : Hengyu Fu et al.
- Keywords : Diffusion model, sequence data, spatial-temporal dependency
- TL;DR : Theoretical analysis of Diffusion Transformerβs ability to capture spatiotemporal dependencies
- Score : 5868
- PostCast: Generalizable Postprocessing for Precipitation Nowcasting via Unsupervised Blurriness Modeling
- π Paper Link
- Authors : Junchao Gong et al.
- Keywords : SciAI, precipitation nowcasting, diffusion model
- Score : 368
- VAE-Var: Variational Autoencoder-Enhanced Variational Methods for Data Assimilation in Meteorology
- π Paper Link
- Authors : Yi Xiao et al.
- Keywords : Data assimilation, VAE, weather forecasting
- Score : 886665
- WeatherGFM: Learning a Weather Generalist Foundation Model via In-context Learning
- π Paper Link
- Authors : Xiangyu Zhao et al.
- Keywords : SciAI, weather foundation model, in-context learning
- Score : 66310
- HR-Extreme: A High-Resolution Dataset for Extreme Weather Forecasting
- π Paper Link
- Authors : Nian Ran et al.
- Keywords : Weather dataset, extreme weather, NWP
- TL;DR : HR-Extreme enables evaluation of extreme weather forecasting
- Score : 5868
- Continuous Ensemble Weather Forecasting with Diffusion Models
- π Paper Link
- Authors : Martin Andrae et al.
- Keywords : Weather forecasting, diffusion, ensemble prediction
- TL;DR : New diffusion-based ensemble forecasting method
- Score : 5555
- CirT: Global Subseasonal-to-Seasonal Forecasting with Geometry-inspired Transformer
- π Paper Link
- Authors : Yang Liu et al.
- Keywords : Weather and climate forecasting
- TL;DR : Introduces a geometry-inspired Transformer for subseasonal-to-seasonal forecasting
- Score : 666
ICDM 2024 Spatiotemporal Learning and Applications Papers
- Towards Efficient Ridesharing via Order-Vehicle Pre-Matching Using Attention Mechanism
- π PDF Link
- Authors : Zhidan Liu, Jinye Lin, Zhiyu Xia, Chao Chen, and Kaishun Wu
- Keywords : Ridesharing, Order-vehicle pre-matching, Self-attention mechanism, Spatiotemporal matching
- LISA: Learning-Integrated Space Partitioning Framework for Traffic Accident Forecasting on Heterogeneous Spatiotemporal Data
- Authors : Bang An, Xun Zhou, Amin Khezerlou, Nick Street, Jinping Guan, and Jun Luo
- Keywords : Traffic accident forecasting, Spatiotemporal data mining
- Align Along Time and Space: A Graph Latent Diffusion Model for Traffic Dynamics Prediction
- Authors : Yuhang Liu, Yingxue Zhang, Xin Zhang, Yu Yang, Yiqun Xie, Sahar Ghanipoor Machiani, Yanhua Li, and Jun Luo
- Keywords : Diffusion models, Urban dynamics prediction, Latent diffusion, Spatiotemporal modeling
- Traffic Pattern Sharing for Federated Traffic Flow Prediction with Personalization
- Authors : Hang Zhou, Wentao Yu, Sheng Wan, Yongxin Tong, Tianlong Gu, and Chen Gong
- Keywords : Spatiotemporal data, Traffic flow prediction, Personalized federated learning
- MetaSTC: A Meta Spatio-Temporal Learning Paradigm for Traffic Flow Prediction (Short Paper)
- Authors : Kexin Xu, Zhemeng Yu, Yucen Gao, Songjian Zhang, Jun Fang, Xiaofeng Gao, and Guihai Chen
- Keywords : Spatiotemporal data mining, Meta-learning, Traffic flow prediction, Backbone-agnostic design
- 2DXformer: Dual Transformers for Wind Power Forecasting with Dual Exogenous Variables
- Authors : Yajuan Zhang, Jiahai Jiang, Yule Yan, Liang Yang, and Ping Zhang
- Keywords : Wind power forecasting, Spatiotemporal forecasting, Exogenous variables, Variable correlation
- Futures Quantitative Investment with Heterogeneous Continual Graph Neural Network
- Authors : Zhizhong Tan, Min Hu, Bin Liu, and Guosheng Yin
- Keywords : Continual learning, Futures price forecasting, Graph neural networks, Spatiotemporal data
- Controllable Visit Trajectory Generation with Spatiotemporal Constraints
- Authors : Yuting Qiang, Jianbin Zheng, Lixia Wu, Haomin Wen, Junhong Lou, and Minhui Deng
- Keywords : Cross-modal learning, Contrastive learning, Query-POI matching, Spatiotemporal constraints
- A Momentum Contrastive Learning Framework for Query-POI Matching
- Authors : Haowen Lin, John Krumm, Cyrus Shahabi, and Li Xiong
- Keywords : Trajectory generation, Spatiotemporal systems, Controlled generation, POI matching
- (Demo) VIA AI: Reliable Deep Reinforcement Learning for Traffic Signal Control
- Authors : Matvey Gerasyov, Dmitrii Kiselev, Maxim Beketov, and Ilya Makarov
- Keywords : Traffic signal control, Deep reinforcement learning, Urban traffic optimization